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The motion of a twodimensional incompressible inviscid and homogeneous fluid 
can be thought of in terms of the gradual evolution of a continuous vorticity distribution, 
each scalar vortex element interacting with every other by an instantaneous action at a 
distance law. It is of particular interest that this model can be expressed in Hamiltonian 
form and that it shows many analogies with similar systems in plasma physics. In 
addition to the standard mesh techniques, a computational description can be obtained 
if the continuous votticity distribution is replaced by a finite set of point vortices inter- 
acting through a stream function which satisfies Poisson’s equation, The point vortices 
move in a velocity field given on a Cartesian mesh such that there is a close resemblance 
to particle models used in plasma simulations. The point vortex model is presented with 
a calculation on a test model and the sources of numerical errors are explained. Graphical 
results from several calculations are shown and it is concluded that the point vortex 
model is useful and versatile for a variety of problems in hydrodynamics as well as in 
plasma physics. 

1. TNTR~DuCTI~N 

Incompressible fluid flows have been the subject of many investigations. Although 
the nonlinearity of the partial differential equations renders them insolvable except 
for special cases, many of the most interesting flow properties can only be explained 
through the nonlinearity. The advent of computers has over the last two decades 
made it a challenging problem to study fluid flows in the nonlinear regime by 
applying suitable numerical techniques. So far efforts have mainly been concen- 
trated on systems of one or two dimensions because of computer storage require- 
ments. A very useful annotated bibliography of numerical methods used in fluid 
dynamics has recently been compiled by Harlow [l]. 

This paper is concerned with incompressible, inviscid flows in two dimensions 
satisfying the Euler equations for an ideal fluid of uniform density 

v * u = 0, 
au/at + u - VU = - Ilp VP, 

(1) 
(2) 
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where II, p, and P denote fluid velocity, density, and pressure, respectively. Provided 
that no free surfaces are present it is convenient to eliminate these primitive 
variables, introducing the vorticity < and stream function + according to 

r=vxu, u-VXJI. 

For a two-dimensional flow field we can consider < = (0, 0, 5) and + 
as scalars and Eqs. (1) and (2) then become 

w + ~5, +I = 0, 

‘17%) = -5, 

where for any two scalars A and B 

[A,B] +$-g$ 

(3) 

(4) 

(5) 

(6) 

Equations (4) and (5) can, of course, be solved by Eulerian mesh techniques and 
many such calculations have been carried out, notably by Fromm. Section IIIA 
of Ref. [I] gives a list of references to this and other work. For sufficiently simple 
geometry, a considerable improvement in speed can be obtained by using a fast 
Fourier transform [2, 31 or similar technique to solve Poisson’s equation (5). 

The method of solution used by Christiansen and Roberts [4] and described in 
this paper differs from those commonly adopted in numerical hydrodynamics, and 
more closely resembles the particle simulation techniques employed in plasma 
physics [5]. It starts from a physical model in which the continuous vorticity 
distribution 5(x, JI) is approximated by a large number of point vortices 

where 5, = + 1 or - 1. Each pair of coordinates (x, , y,) is called a point vortex 
and satisfies the equations of motion 

a* 3i*,=--, a* 
aY% 

9n= -ax,, 

where # is a solution of Poisson’s equation (5) 

(9) 

(10) 

the infinite self energy of each point vortex being excluded. 
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Groups at Livermore, Los Alamos, Stanford, Princeton, and elsewhere have 
developed a variety of numerical techniques for particle simulation in plasma 
physics, and calculations have been reported by Birdsall, Fuss, Byers, Morse, 
Hackney, Dawson, and others. Reference [5] provides a recent account of this work. 
There are interesting analogies [6] between the incompressible flow of a real 
hydrodynamic fluid in two-dimensional (x, y)-space, and the incompressible flow 
of a “phase fluid” in the two-dimensional (q, p) space which is used to describe a 
collisionless plasma satisfying the Vlasov equation. 

The hydrodynamic program VORTEX which is discussed in this paper has in 
fact been used by Taylor and McNamara [7] to study two-dimensional guiding 
center problems in a magnetized plasma which are formally identical to those of 
an ideal fluid, whilst the hydrodynamic flows depicted in Fig. 5 (rows 1 and 3) were 
previously studied in the plasma case by Byers [8] and Hackney [9], and by 
Birdsall and Fuss [IO], respectively. These authors included a finite Larmor radius, 
but despite these and other differences our results agree qualitatively with theirs. 

One reason why vortices are important in hydrodynamics is that they are the 
sources for the incompressible flow field; if we are given the vorticity distribution 
at any instant of time then both the current state of the system and its future 
evolution are in principle determined subject to appropriate boundary conditions. 
This property is reminiscent of any Hamiltonian system, and it can indeed be shown 
that the equations (4) and (5) can usefully be expressed in Hamiltonian form. 
Another obvious analogy is with interacting electrical point charges or gravitating 
masses by virtue of Poisson’s equation. This suggests that an incompressible flow 
field should be thought of in terms of the mutual interaction of a set of vortex 
elements (action-at-a-distance model), rather than in terms of the velocity field 
itself (field model), and a much clearer picture of the flow is often obtained in this 
way. Point vortex models have been used in numerical calculations by several 
authors, as for example by Abernathy and Kronauer [I 11, who studied the for- 
mation of the von K&man vortex street, and Chorin [12], who used point vortices 
for studies of slightly viscous flows. 

It is of great interest to study quite simple flow configurations in two dimensions 
in order to acquire a fundamental understanding of the dynamics of nonlinear 
flows. In Figs. 5 and 6 at the end of this paper we show seven examples of hydro- 
dynamic systems to emphasize the complexity of nonlinear processes. These 
seven systems have been simulated using the numerical techniques discussed in 
this paper. The state of the system at time t may be represented by a set of contours 
5(x, y, t) = constant, and according to Eq. (4) these move with the fluid, the area 
between any pair of contours remaining constant with time. Step-function or 
“waterbag” distributions in which the contours enclose regions of uniform vorticity 
5 = &<, are of particular interest. 

To interpret the phenomena that we discover from any type of numerical 
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simulation it is necessary to understand in detail the errors which are introduced 
by replacing the partial differential equations by their finite difference equivalents. 
These errors can most easily be determined by comparing the numerical solutions 
of simple well known problems with their analytic counterparts. Any anomalies 
such as numerical viscosity which are contanied within the difference scheme will 
then appear in an obvious way. In this paper we describe the numerical scheme 
which is used to follow the motion of an assembly of point vortices. This numerical 
scheme is applied to a simple test problem described in Sections 4 and 5. The 
results from calculations on the test problem are presented and analyzed. In the 
last section we outline the deficiencies of the numerical scheme as well as the 
motivations for using it. 

2. A NUMERICAL SCHEME FOR THE MOTION OF POINT VORTICES 

Suppose we are given an ensemble of N point vortices with coordinates (x, , y,) 
lying inside a rectangular region covered by a Cartesian mesh of size N, by NV . 
To evaluate the vorticity <(i,j) at the mesh point (i,j) we use the cloud-in-cell (CIC) 
method [13]. This method assumes each “point” vortex to possess uniform 
vorticity within a unit square such that the corresponding unit amount of vorticity 
can be credited to surrounding mesh points through a bilinear interpolation. 
A smoothing of the vorticity distribution will result from the bilinear interpolation, 
and Section 6 describes the numerical effect of this. 

Let us assume that the coordinates of a point vortex are written as x, = i + dx 
and Y, = j + dy. The CIC method credits vorticity to the four surrounding 
meshpoints by 

LJi,j) = (1 - dx)(l - dy) = A,, [(I- + 1,j) = dx(1 - dy) = A,, 

[(i, j + 1) = (1 - dx) dy = A, , c(i+ l,j+ 1) = dxdy = A,. (11) 

The quantities ,4-A, represent four areas of intersection between the mesh and the 
square-shaped vortex, and the CIC method is often referred to as the area-weighting 
technique. When the vorticity from all N point vortices has been credited to the 
mesh points using (1 l), Poisson’s equation (5) can be solved by the usual five-point 
approximation 

= -5(i, j), (12) 

where Ax, Ay are the mesh spacings. Equation (12) is solved by the Hackney 
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method [14] allowing for a variety of boundary conditions. The velocity field is 
evaluated by centered differences 

4 .i) = $w,j + 1) - gL(i,j - 1) . 
DAY 

, u,(i,j) = _ $6 + 1 *A - $4 - 1T.i) 
2Ax 

(13) 

To advance the set of positions (x, , yn) one timestep, a leapfrog scheme, is used. 
Two sets of coordinates (x, , y,Jeven and (x, , y,Jodd are introduced in order to 
express the coordinates at alternate times 2s At and (2s + 1) At. The equations 

then become, letting superscript s denote the time s At, 

s+1 
X, = xi-;’ + u:(x”, , y;) 2At, 

s+1 
Y, = y;--’ + u&x; , y;) 2At. 

(14) 

The set of coordinates (xi , yi) determines the velocity field (also l”, @) which is 
used to move the other set. The velocity II = (u, , u,) used in (14) is evaluated by 
the CIC method according to 

u(x:, ,y;> = AS,u(i,j) + A”,u(i + 1,j) + A;U(i,j + 1) + &(u(i + 1Y.j + 1)) (15) 

where the four areas A-A; at time s At are given by (11). Equations (11) and (15) 
form a consistent set of interpolations in the sense that a single point vortex will 
not move in its own velocity field. 

3. THE VORTEX COMPUTER CODE 

The computer code VORTEX [15] solves Eqs. (1 I)-(14) on a square mesh with 
N, = N, = 64 and Ax = Ay = 1. Part of the code is the Hackney-Poisson 
solver POT1 [14] which allows nine different sets of boundary conditions in x and y. 
Only two of these nine sets have been used for the flows of Figs. 5 and 6. The 
stream function is in the first case assumed constant along the square boundary. 
In the second case # is periodic in x and constant along the y-boundaries. The 
computing time used to implement the sequence (1 l)-( 14) depends on the boundary 
conditions. On an ICL KDF9 computer (equivalent to an IBM 7090) it took 
12.5 set to advance the positions of 3200 point vortices (negative or positive) when 
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4 is constant along the boundary. Most of this time (approx. 10 set) was taken up 
by solving Poisson’s equation while Eq. (14) was solved by a fast vector integration 
technique described by Roberts and Boris in an earlier paper [ 161. 

The dynamics of the flows shown in Figs. 5 and 6 have been analyzed by the 
author [17]. This reference also describes the effects caused by the finite difference 
formulation, i.e., the use of finite values of N, dx, dy, and dt. The VORTEX code 
has in addition been used extensively to study two-dimensional guiding center 
plasmas by Taylor and McNamara [7] and by Christiansen and Taylor [18]. The 
motion of guiding centers for ions and electrons is identical to that of positive and 
negative point vortices, respectively, and in these calculations the electrostatic 
potential 9) which is identical to the stream function $ is assumed periodic in both 
x and y. 

4. PROPERTIES OF THE TEST SYSTEM 

To obtain a quantitative measure of the effects of the approximations made in 
Eqs. (1 I)-( 15) we apply the numerical scheme described in Section 2 to a simple 
and fully understood flow problem. By choosing a time-independent flow as a test 
problem for the scheme we can be sure that any time variation occurring in the 
numerical results must be ascribed to the approximations made. 

A circular region of radius R, and 5 = <, with < = 0 elsewhere is called 
Rankine’s combined vortex [ 19, 201, when the solutions to Poisson’s and Laplace’s 
equations inside and outside the circle, respectively, are fitted properly at r = R, 

The fluid velocity is everywhere azimuthal 

24, = 0, 

u, = *i&r r < R,, (17) 

us = i%(&2/r> r 2 R,, 

which is indicated in Fig. 1. Since the vorticity c is a function of the stream function 
$ only, i.e., 5 = [(#), we have a steady state flow as the Poisson bracket [[, #] of 
Eq. (4) is zero. Rankine’s combined vortex is an analytic approximation to a 
motion often encountered in real fluids, although the viscous effects present in 
real fluids will eventually smooth out the discontinuous 5 distribution, vorticity 
diffusing through the surrounding irrotationally-moving fluid according to 
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FIG. 1. Rankine’s combined vortex as test model. 

dQdt = v2V2< so that the vortex decays exponentially and in the limit t + co the 
flow is fully irrotational [21]. 

If a small-amplitude irrotational disturbance 

(18) 

is imposed it will cause a stable azimuthal corrugation to travel around the interface 
r = R, with an angular velocity [19] 

w,lm = +Ld(m - 1 )/ml. (19) 

The steady-state flow is, thus, linearly stable, an important feature in view of the 
results presented in Section 6. 

5. THE SET-UP FOR NUMERICAL SIMULATION 

To obtain a circular region of constant 5 = [,, we distribute point vortices as 
shown in Fig. 2. On J rings of radii rj = jd, ,j = 1, J we place point vortices at 
angles Bij = i(27r/jM), i = 1, jM. This distribution credits a constant area 
rd2(2J/(J + 1)M) to each point vortex. 

In the experiments we set d = 0.3, J = 24, M = 10. The total number of 
particles is 3,000 plus two particles in the center. The area is 163 and the period of 
rotation is 7’,, = 4z-/5, = 0.682. We have chosen At = 16/3002, such that the 
approximate number of timesteps for one rotation is 128. The maximum velocity 



370 CHRISTIANSEN 

FIG. 2. Point vortices arranged to simulate Rankine’s combined vortex. 

occurring at r = I?, is V max = &,R,, = 66.4 so that the Courant-Friedrichs-Lewy 
condition is satisfied ( Vmax dt = 0.35). 

A system of point vortices resembling the arrangement in Fig. 2 has been 
examined by Morikawa and Swenson [22]. They study Npoint vortices, geostrophic 
or logarithmic, distributed on a circle. Their stability analysis of this system is 
already quite complex as N varies from 2 to 10, and with 24 rings present in our 
experiment we shall make no attempt to analyze the stability. 

In the first series of experiments we place the vortex made up of particles in the 
center of a square mesh and normally restrict # to be a constant (0) along the 
perimeter of the square. The simulation is run for about 1,000 timesteps. Ideally 
alljM point vortices on ringj should remain on this ring. To see whether this is the 
case we define the radius function forringd as 

where r, is the fixed center of gravity of the jM points on ring j 

The radius function can be represented by a finite Fourier series 

(20) 

where a, is complex. Evidently a, = a, = 0. Since at t = 0, a, = 0 for all m any 
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development of an azimuthal mode will represent effects that are due to the finite 
difference formulation or the arrangement of points as explained above. 

Analysis of the positions ri , i = 1, jA4 provides us with a, (m = 1, 16) as well as 
the perimeter and area enclosed by the curve they define. We have carried out 
seven numerical experiments as outlined below. In these experiments we try to 
eliminate the effects from each of the approximations (12)-( 15). 

Experiment 1: Standard experiment on the vortex as described above. 

Experiment 2: Along the square boundary # becomes a function of the 
distance from the center of the vortex. 

Experiment 3: dt is varied. 

Experiment 4: A single ring of radius R, = 6.0 is moved in a time inde- 
pendent velocity field inherited from Experiment 1. 

Experiment 5: As Experiment 4 but with R, = 7.22/6.0. 
Experiment 6: As Experiment 4 but with Rd = R, = 7.2. 
Experiment 7: Repeats of Experiments 4-6 but with an analytic velocity 

field. 

6. RESULTS FROM THE CALCULATIONS 

The results from Experiment 1 reveal an anomalous instability: The azimuthal 
modes a4 , a, , aI2 ,. . . (Eq. (20)) grow with time as shown in Fig. 3 for a4 . All other 
modes remain at the level of rounding off errors. The area of the vortex, the total 
kinetic energy and the angular momentum which are invariants of motion [17] 

FIG. 3. Amplitude of the m = 4 azimuthal mode versus time, measured at r = 7.2. 



372 CHRISTIANSEN 

are conserved to within rounding off errors. In [I 71 it is shown that the presence of 
a square and fixed boundary changes the stream function (Eq. (16)) by S$ where 

L is the dimension of the square. &,!I is a disturbance of the type given by Eq. (18), 
and it causes stable modes a4nl to oscillate with an w,, given by Eq. (19). The 
amplitudes a, are related to the coefficients b, of Eq. (21) by [ 191 

a - G’4io> bw, . rrt - 

With our data a4 N 10-j. The rounding off errors are of the order IO-” (in cell 
length units) corresponding to 18 bits [16]. Thus, the square fixed boundary 
cannot cause the amplitudes adm to grow and Experiment 2 verifies this. 

The leapfrog time integration method (Eq. (14)) can cause numerical instabilities 
when the two time levels get out of step. We have, however, devised a method [ 151 
of suppressing such a tendency. In Experiment 3 this method is applied at a variable 
frequency for several calculations and different values of dt are also used. However, 
the azimuthal modes develop as they did in Experiment 1. 

In Experiments 4-6 we eliminate the solution of Poisson’s equation (Eq. (12)) 
and the difference form (Eq. (13)) by moving a ring of particles in the t = 0 
velocity field of Experiment 1. The motion follows Eqs. (14) and (15). It is found 
in Experiment 4 that aJrn oscillate with the frequencies given by Eq. (19) as shown 
in Fig. 4 for a4 . Experiments 5 and 6 produce the growth of Experiment I. 

Finally, to eliminate possible errors in the t = 0 velocity field calculated in 
Experiment I, we repeat Experiments 4-6, this time (Experiment 7) with the 
analytic velocity field of Eq. (17). Experiment 7 demonstrates that the area- 

FIG. 4. Amplitude of the m = 4 azimuthal mode versus time, measured at Y = 6.0. 
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weighting method is exact when r < R, since then the velocity varies linearly 
with Y. For r > R, the interpolation method introduces a radial velocity com- 
ponent which changes the circular particle orbits by up to 1 % during half a rotation 
period, or roughly the amount corresponding to the amplitude of a4 at t = T/2. 

The seven experiments on the test model show that the most significant numerical 
error arises from the anisotropic CIC-interpolation of velocities given by Eq. (15). 
The truncation errors associated with the finite difference forms have negligible 
influence on the growth of the azimuthal modes Q,,, which slowly distort the circular 
surface of the vortex. The only way to remove this anomaly is to adopt either a 
more complex interpolation algorithm which produces an isotropic velocity field 
from a point vortex (r-dependence only), or to employ a different mesh structure 
(for example a hexagonal or triangular mesh). Interpolation algorithms much more 
costly than the CIC method have recently been developed by Hackney et al. [23] 
for applications in plasma simulations where isotropic force fields from single 
particles are required. 

7. ADVANTAGES AND DEFICIENCIES OF PARTICLE APPROACH 

Two questions that inevitable arise from the foregoing discussion are: How 
useful is the particle model for a further study of hydrodynamics ? And how does 
it compare with other numerical techniques ? 

The answer to the first question is based on our experience from a series of 
numerical simulations on a variety of hydrodynamic problems. (see Figs. 5 and 6). 
The particle model has proved useful and reliable within a time range that naturally 
depends on what accuracy is needed and what kind of distribution is required. 
Good agreement has been achieved between theory and a number of numerical 
results [17, 181. For a given flow problem that can be described analytically in the 
linear regime we can by comparing theory and experiment acquire a quantitative 
understanding of how the inaccuracies are related to the length of the time 
integration. In most of the cases that we have encountered the prominent part of 
the evolution takes place before the accumulation of errors can distort the result. 
For example, in studies of the interaction between vortices [24] the picture of 
evolution is almost complete within 3,4, or 5 periods of rotation of a single vortex, 
limiting the anomalous growth of azimuthal modes studied in this paper to, say, 
5-6 %. 

The main alternative to our method seems to be a mesh method like the one 
used by Fromm and Harlow [25] or by Zabusky and Deem [26], which is subject 
to conditions for numerical stability analogous to those outlined in [15] but 
causes vorticity to diffuse very quickly so that pictures such as those of Figs. 5 
and 6 could not be obtained in this way. During the development of our technique 
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the accurate graphical display of the particle positions seemed an attractive 
feature, and we were also attracted by the particle method when it became clear 
how to optimize the equations of motion for particles [16] so that the amount of 
computer time required for either method is much the same. 

CONCLUSION 

We have presented a particle model which simulates the motion of a continuous 
hydrodynamic fluid. We have shown how the numerical scheme like any other 
finite difference formulation contains certain anomalies. Our test problem has, 
however, proved that the approximations made will not affect the results seriously 
over a timescale appropriate for a study of many hydrodynamic flows (see 
Figs. 5 and 6). 
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